Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Distributed Nonparametric Function Estimation: Optimal Rate of Convergence and Cost of Adaptation (2107.00179v1)

Published 1 Jul 2021 in math.ST, cs.DC, cs.LG, stat.ML, and stat.TH

Abstract: Distributed minimax estimation and distributed adaptive estimation under communication constraints for Gaussian sequence model and white noise model are studied. The minimax rate of convergence for distributed estimation over a given Besov class, which serves as a benchmark for the cost of adaptation, is established. We then quantify the exact communication cost for adaptation and construct an optimally adaptive procedure for distributed estimation over a range of Besov classes. The results demonstrate significant differences between nonparametric function estimation in the distributed setting and the conventional centralized setting. For global estimation, adaptation in general cannot be achieved for free in the distributed setting. The new technical tools to obtain the exact characterization for the cost of adaptation can be of independent interest.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)