Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Zero-Shot Estimation of Base Models' Weights in Ensemble of Machine Reading Comprehension Systems for Robust Generalization (2106.16013v1)

Published 30 Jun 2021 in cs.CL

Abstract: One of the main challenges of the machine reading comprehension (MRC) models is their fragile out-of-domain generalization, which makes these models not properly applicable to real-world general-purpose question answering problems. In this paper, we leverage a zero-shot weighted ensemble method for improving the robustness of out-of-domain generalization in MRC models. In the proposed method, a weight estimation module is used to estimate out-of-domain weights, and an ensemble module aggregate several base models' predictions based on their weights. The experiments indicate that the proposed method not only improves the final accuracy, but also is robust against domain changes.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.