Papers
Topics
Authors
Recent
2000 character limit reached

A Pairwise Connected Tensor Network Representation of Path Integrals (2106.14934v4)

Published 28 Jun 2021 in quant-ph and physics.chem-ph

Abstract: It has been recently shown how the tensorial nature of real-time path integrals involving the Feynman-Vernon influence functional can be utilized using matrix product states, taking advantage of the finite length of the non-Markovian memory. Tensor networks promise to provide a new, unified language to express the structure of path integral. Here, a generalized tensor network is derived and implemented specifically incorporating the pairwise interaction structure of the influence functional, allowing for a compact representation and efficient evaluation. This pairwise connected tensor network path integral (PCTNPI) is illustrated through applications to typical spin-boson problems and explorations of the differences caused by the exact form of the spectral density. The storage requirements and performance are compared with iterative quasi-adiabatic propagator path integral and iterative blip-summed path integral. Finally, the viability of using PCTNPI for simulating multistate problems is demonstrated taking advantage of the compressed representation.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.