Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 56 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

GAN-MDF: A Method for Multi-fidelity Data Fusion in Digital Twins (2106.14655v1)

Published 24 Jun 2021 in cs.LG

Abstract: The Internet of Things (IoT) collects real-time data of physical systems, such as smart factory, intelligent robot and healtcare system, and provide necessary support for digital twins. Depending on the quality and accuracy, these multi-source data are divided into different fidelity levels. High-fidelity (HF) responses describe the system of interest accurately but are computed costly. In contrast, low-fidelity (LF) responses have a low computational cost but could not meet the required accuracy. Multi-fidelity data fusion (MDF) methods aims to use massive LF samples and small amounts of HF samples to develop an accurate and efficient model for describing the system with a reasonable computation burden. In this paper, we propose a novel generative adversarial network for MDF in digital twins (GAN-MDF). The generator of GAN-MDF is composed of two sub-networks: one extracts the LF features from an input; and the other integrates the input and the extracted LF features to form the input of the subsequent discriminator. The discriminator of GAN-MDF identifies whether the generator output is a real sample generated from HF model. To enhance the stability of GAN-MDF's training, we also introduce the supervised-loss trick to refine the generator weights during each iteration of the adversarial training. Compared with the state-of-the-art methods, the proposed GAN-MDF has the following advantages: 1) it performs well in the case of either nested or unnested sample structure; 2) there is no specific assumption on the data distribution; and 3) it has high robustness even when very few HF samples are provided. The experimental results also support the validity of GAN-MDF.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.