Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 40 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Fast and stable modification of the Gauss-Newton method for low-rank signal estimation (2106.14215v1)

Published 27 Jun 2021 in math.NA, cs.NA, and stat.CO

Abstract: The weighted nonlinear least-squares problem for low-rank signal estimation is considered. The problem of constructing a numerical solution that is stable and fast for long time series is addressed. A modified weighted Gauss-Newton method, which can be implemented through the direct variable projection onto a space of low-rank signals, is proposed. For a weight matrix which provides the maximum likelihood estimator of the signal in the presence of autoregressive noise of order $p$ the computational cost of iterations is $O(N r2 + N p2 + r N \log N)$ as $N$ tends to infinity, where $N$ is the time-series length, $r$ is the rank of the approximating time series. Moreover, the proposed method can be applied to data with missing values, without increasing the computational cost. The method is compared with state-of-the-art methods based on the variable projection approach in terms of floating-point numerical stability and computational cost.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.