Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

The Kodaira classification of the moduli of hyperelliptic curves (2106.13774v5)

Published 25 Jun 2021 in math.AG

Abstract: We study the birational geometry of the moduli spaces of hyperelliptic curves with marked points. We show that these moduli spaces have non $\mathbb{Q}$-factorial singularities. We complete the Kodaira classification by proving that these spaces have Kodaira dimension $4g+3$ when the number of markings is $4g+6$ and are of general type when the number of markings is $n\geq4g+7$. Similarly, we consider the natural finite cover given by ordering the Weierstrass points. In this case, we provide a full Kodaira classification showing that the Kodaira dimension is negative when $n\leq3$, one when $n=4$, and of general type when $n\geq 5$. For this, we carry out a singularity analysis of ordered and unordered pointed Hurwitz spaces. We show that the ordered space has canonical singularities and the unordered space has non-canonical singularities. We describe all non-canonical points and show that pluricanonical forms defined on the full regular locus extend to any resolution. Further, we provide a full classification of the structure of the pseudo-effective cone of Cartier divisors for the moduli space of hyperelliptic curves with marked points. We show the cone is non-polyhedral when the number of markings is at least two and polyhedral in the remaining cases.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube