Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Long short-term relevance learning (2106.12694v1)

Published 21 Jun 2021 in cs.LG and stat.ML

Abstract: To incorporate prior knowledge as well as measurement uncertainties in the traditional long short term memory (LSTM) neural networks, an efficient sparse Bayesian training algorithm is introduced to the network architecture. The proposed scheme automatically determines relevant neural connections and adapts accordingly, in contrast to the classical LSTM solution. Due to its flexibility, the new LSTM scheme is less prone to overfitting, and hence can approximate time dependent solutions by use of a smaller data set. On a structural nonlinear finite element application we show that the self-regulating framework does not require prior knowledge of a suitable network architecture and size, while ensuring satisfying accuracy at reasonable computational cost.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.