Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 142 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Gradient-Based Interpretability Methods and Binarized Neural Networks (2106.12569v1)

Published 23 Jun 2021 in cs.CV, cs.AI, and cs.LG

Abstract: Binarized Neural Networks (BNNs) have the potential to revolutionize the way that deep learning is carried out in edge computing platforms. However, the effectiveness of interpretability methods on these networks has not been assessed. In this paper, we compare the performance of several widely used saliency map-based interpretabilty techniques (Gradient, SmoothGrad and GradCAM), when applied to Binarized or Full Precision Neural Networks (FPNNs). We found that the basic Gradient method produces very similar-looking maps for both types of network. However, SmoothGrad produces significantly noisier maps for BNNs. GradCAM also produces saliency maps which differ between network types, with some of the BNNs having seemingly nonsensical explanations. We comment on possible reasons for these differences in explanations and present it as an example of why interpretability techniques should be tested on a wider range of network types.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.