Papers
Topics
Authors
Recent
2000 character limit reached

Feature Alignment as a Generative Process (2106.12562v2)

Published 23 Jun 2021 in cs.LG and cs.CV

Abstract: Reversibility in artificial neural networks allows us to retrieve the input given an output. We present feature alignment, a method for approximating reversibility in arbitrary neural networks. We train a network by minimizing the distance between the output of a data point and the random output with respect to a random input. We applied the technique to the MNIST, CIFAR-10, CelebA and STL-10 image datasets. We demonstrate that this method can roughly recover images from just their latent representation without the need of a decoder. By utilizing the formulation of variational autoencoders, we demonstrate that it is possible to produce new images that are statistically comparable to the training data. Furthermore, we demonstrate that the quality of the images can be improved by coupling a generator and a discriminator together. In addition, we show how this method, with a few minor modifications, can be used to train networks locally, which has the potential to save computational memory resources.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.