Identity between Restricted Cauchy Sums for the $q$-Whittaker and Skew Schur Polynomials (2106.11913v3)
Abstract: The Cauchy identities play an important role in the theory of symmetric functions. It is known that Cauchy sums for the $q$-Whittaker and the skew Schur polynomials produce the same factorized expressions modulo a $q$-Pochhammer symbol. We consider the sums with restrictions on the length of the first rows for labels of both polynomials and prove an identity which relates them. The proof is based on techniques from integrable probability: we rewrite the identity in terms of two probability measures: the $q$-Whittaker measure and the periodic Schur measure. The relation follows by comparing their Fredholm determinant formulas.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.