Data Augmentation for Opcode Sequence Based Malware Detection (2106.11821v2)
Abstract: In this paper we study data augmentation for opcode sequence based Android malware detection. Data augmentation has been successfully used in many areas of deep-learning to significantly improve model performance. Typically, data augmentation simulates realistic variations in data to increase the apparent diversity of the training-set. However, for opcode-based malware analysis it is not immediately clear how to apply data augmentation. Hence we first study the use of fixed transformations, then progress to adaptive methods. We propose a novel data augmentation method -- Self-Embedding LLM Augmentation -- that uses a malware detection network's own opcode embedding layer to measure opcode similarity for adaptive augmentation. To the best of our knowledge this is the first paper to carry out a systematic study of different augmentation methods for opcode sequence based Android malware classification.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.