Papers
Topics
Authors
Recent
2000 character limit reached

A Generalized Cross Ratio (2106.10570v1)

Published 19 Jun 2021 in math.CV

Abstract: In one complex variable, the cross ratio is a well-known quantity associated with four given points in the complex plane that remains invariant under linear fractional maps. In particular, if one knows where three points in the complex plane are mapped under a linear fractional map, one can use this invariance to explicitly determine the map and to show that linear fractional maps are $3$-transitive. In this paper, we define a generalized cross ratio and determine some of its basic properties. In particular, we determine which hypotheses must be made to guarantee that our generalized cross ratio is well defined. We thus obtain a class of maps that obey similar transitivity properties as in one complex dimension, under some more restrictive conditions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.