Papers
Topics
Authors
Recent
2000 character limit reached

Trading with the Crowd

Published 17 Jun 2021 in q-fin.TR and math.PR | (2106.09267v3)

Abstract: We formulate and solve a multi-player stochastic differential game between financial agents who seek to cost-efficiently liquidate their position in a risky asset in the presence of jointly aggregated transient price impact, along with taking into account a common general price predicting signal. The unique Nash-equilibrium strategies reveal how each agent's liquidation policy adjusts the predictive trading signal to the aggregated transient price impact induced by all other agents. This unfolds a quantitative relation between trading signals and the order flow in crowded markets. We also formulate and solve the corresponding mean field game in the limit of infinitely many agents. We prove that the equilibrium trading speed and the value function of an agent in the finite $N$-player game converges to the corresponding trading speed and value function in the mean field game at rate $O(N{-2})$. In addition, we prove that the mean field optimal strategy provides an approximate Nash-equilibrium for the finite-player game.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.