Papers
Topics
Authors
Recent
2000 character limit reached

mPyPl: Python Monadic Pipeline Library for Complex Functional Data Processing (2106.09164v1)

Published 16 Jun 2021 in cs.PL, cs.AI, and cs.LG

Abstract: In this paper, we present a new Python library called mPyPl, which is intended to simplify complex data processing tasks using functional approach. This library defines operations on lazy data streams of named dictionaries represented as generators (so-called multi-field datastreams), and allows enriching those data streams with more 'fields' in the process of data preparation and feature extraction. Thus, most data preparation tasks can be expressed in the form of neat linear 'pipeline', similar in syntax to UNIX pipes, or |> functional composition operator in F#. We define basic operations on multi-field data streams, which resemble classical monadic operations, and show similarity of the proposed approach to monads in functional programming. We also show how the library was used in complex deep learning tasks of event detection in video, and discuss different evaluation strategies that allow for different compromises in terms of memory and performance.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.