Papers
Topics
Authors
Recent
2000 character limit reached

Selecting for Selection: Learning To Balance Adaptive and Diversifying Pressures in Evolutionary Search (2106.09153v1)

Published 16 Jun 2021 in cs.NE

Abstract: Inspired by natural evolution, evolutionary search algorithms have proven remarkably capable due to their dual abilities to radiantly explore through diverse populations and to converge to adaptive pressures. A large part of this behavior comes from the selection function of an evolutionary algorithm, which is a metric for deciding which individuals survive to the next generation. In deceptive or hard-to-search fitness landscapes, greedy selection often fails, thus it is critical that selection functions strike the correct balance between gradient-exploiting adaptation and exploratory diversification. This paper introduces Sel4Sel, or Selecting for Selection, an algorithm that searches for high-performing neural-network-based selection functions through a meta-evolutionary loop. Results on three distinct bitstring domains indicate that Sel4Sel networks consistently match or exceed the performance of both fitness-based selection and benchmarks explicitly designed to encourage diversity. Analysis of the strongest Sel4Sel networks reveals a general tendency to favor highly novel individuals early on, with a gradual shift towards fitness-based selection as deceptive local optima are bypassed.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.