Papers
Topics
Authors
Recent
2000 character limit reached

Optimizing Data Augmentation Policy Through Random Unidimensional Search (2106.08756v4)

Published 16 Jun 2021 in cs.LG and cs.CV

Abstract: It is no secret amongst deep learning researchers that finding the optimal data augmentation strategy during training can mean the difference between state-of-the-art performance and a run-of-the-mill result. To that end, the community has seen many efforts to automate the process of finding the perfect augmentation procedure for any task at hand. Unfortunately, even recent cutting-edge methods bring massive computational overhead, requiring as many as 100 full model trainings to settle on an ideal configuration. We show how to achieve equivalent performance using just 6 trainings with Random Unidimensional Augmentation. Source code is available at https://github.com/fastestimator/RUA/tree/v1.0

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.