Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

PatchNet: Unsupervised Object Discovery based on Patch Embedding (2106.08599v1)

Published 16 Jun 2021 in cs.CV and cs.AI

Abstract: We demonstrate that frequently appearing objects can be discovered by training randomly sampled patches from a small number of images (100 to 200) by self-supervision. Key to this approach is the pattern space, a latent space of patterns that represents all possible sub-images of the given image data. The distance structure in the pattern space captures the co-occurrence of patterns due to the frequent objects. The pattern space embedding is learned by minimizing the contrastive loss between randomly generated adjacent patches. To prevent the embedding from learning the background, we modulate the contrastive loss by color-based object saliency and background dissimilarity. The learned distance structure serves as object memory, and the frequent objects are simply discovered by clustering the pattern vectors from the random patches sampled for inference. Our image representation based on image patches naturally handles the position and scale invariance property that is crucial to multi-object discovery. The method has been proven surprisingly effective, and successfully applied to finding multiple human faces and bodies from natural images.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.