Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Unsupervised Natural Image Patch Learning (1807.03130v1)

Published 28 Jun 2018 in cs.CV

Abstract: Learning a metric of natural image patches is an important tool for analyzing images. An efficient means is to train a deep network to map an image patch to a vector space, in which the Euclidean distance reflects patch similarity. Previous attempts learned such an embedding in a supervised manner, requiring the availability of many annotated images. In this paper, we present an unsupervised embedding of natural image patches, avoiding the need for annotated images. The key idea is that the similarity of two patches can be learned from the prevalence of their spatial proximity in natural images. Clearly, relying on this simple principle, many spatially nearby pairs are outliers, however, as we show, the outliers do not harm the convergence of the metric learning. We show that our unsupervised embedding approach is more effective than a supervised one or one that uses deep patch representations. Moreover, we show that it naturally leads itself to an efficient self-supervised domain adaptation technique onto a target domain that contains a common foreground object.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube