Papers
Topics
Authors
Recent
Search
2000 character limit reached

Limited-Information Maximum Likelihood based Model Selection Procedures for Binary Outcomes

Published 14 Jun 2021 in stat.ME, math.ST, stat.OT, and stat.TH | (2106.07587v3)

Abstract: Unmeasured covariates constitute one of the important problems in causal inference. Even if there are some unmeasured covariates, some instrumental variable methods such as a two-stage residual inclusion (2SRI) estimator, or a limited-information maximum likelihood (LIML) estimator can obtain an unbiased estimate for causal effects despite there being nonlinear outcomes such as binary outcomes; however, it requires that we specify not only a correct outcome model but also a correct treatment model. Therefore, detecting correct models is an important process. In this paper, we propose two model selection procedures: AIC-type and BIC-type, and confirm their properties. The proposed model selection procedures are based on a LIML estimator. We prove that a proposed BIC-type model selection procedure has model selection consistency, and confirm their properties of the proposed model selection procedures through simulation datasets.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.