Papers
Topics
Authors
Recent
2000 character limit reached

Classical and Quantum Algorithms for Orthogonal Neural Networks (2106.07198v2)

Published 14 Jun 2021 in quant-ph

Abstract: Orthogonal neural networks have recently been introduced as a new type of neural networks imposing orthogonality on the weight matrices. They could achieve higher accuracy and avoid evanescent or explosive gradients for deep architectures. Several classical gradient descent methods have been proposed to preserve orthogonality while updating the weight matrices, but these techniques suffer from long running times or provide only approximate orthogonality. In this paper, we introduce a new type of neural network layer called Pyramidal Circuit, which implements an orthogonal matrix multiplication. It allows for gradient descent with perfect orthogonality with the same asymptotic running time as a standard layer. This algorithm is inspired by quantum computing and can therefore be applied on a classical computer as well as on a near term quantum computer. It could become the building block for quantum neural networks and faster orthogonal neural networks.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.