Papers
Topics
Authors
Recent
2000 character limit reached

Correcting Exposure Bias for Link Recommendation (2106.07041v1)

Published 13 Jun 2021 in cs.LG

Abstract: Link prediction methods are frequently applied in recommender systems, e.g., to suggest citations for academic papers or friends in social networks. However, exposure bias can arise when users are systematically underexposed to certain relevant items. For example, in citation networks, authors might be more likely to encounter papers from their own field and thus cite them preferentially. This bias can propagate through naively trained link predictors, leading to both biased evaluation and high generalization error (as assessed by true relevance). Moreover, this bias can be exacerbated by feedback loops. We propose estimators that leverage known exposure probabilities to mitigate this bias and consequent feedback loops. Next, we provide a loss function for learning the exposure probabilities from data. Finally, experiments on semi-synthetic data based on real-world citation networks, show that our methods reliably identify (truly) relevant citations. Additionally, our methods lead to greater diversity in the recommended papers' fields of study. The code is available at https://github.com/shantanu95/exposure-bias-link-rec.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.