Study of sampling methods in sentiment analysis of imbalanced data (2106.06673v1)
Abstract: This work investigates the application of sampling methods for sentiment analysis on two different highly imbalanced datasets. One dataset contains online user reviews from the cooking platform Epicurious and the other contains comments given to the Planned Parenthood organization. In both these datasets, the classes of interest are rare. Word n-grams were used as features from these datasets. A feature selection technique based on information gain is first applied to reduce the number of features to a manageable space. A number of different sampling methods were then applied to mitigate the class imbalance problem which are then analyzed.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.