Papers
Topics
Authors
Recent
2000 character limit reached

Semiclassical states for a magnetic nonlinear Schrödinger equation with exponential critical growth in $\mathbb{R}^{2}$ (2106.05962v1)

Published 10 Jun 2021 in math.AP

Abstract: This paper is devoted to the magnetic nonlinear Schr\"{o}dinger equation [ \Big(\frac{\varepsilon}{i}\nabla-A(x)\Big){2}u+V(x)u=f(| u|{2})u \text{ in } \mathbb{R}{2}, ] where $\varepsilon>0$ is a parameter, $V:\mathbb{R}{2}\rightarrow \mathbb{R}$ and $A: \mathbb{R}{2}\rightarrow \mathbb{R}{2}$ are continuous functions and $f:\mathbb{R}\rightarrow \mathbb{R}$ is a $C{1}$ function having exponential critical growth. Under a global assumption on the potential $V$, we use variational methods and Ljusternick-Schnirelmann theory to prove existence, multiplicity, concentration, and decay of nontrivial solutions for $\varepsilon>0$ small.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.