Papers
Topics
Authors
Recent
2000 character limit reached

Bilinear Wavelet Representation of Calderón-Zygmund Forms (2106.05604v2)

Published 10 Jun 2021 in math.CA

Abstract: We represent a bilinear Calder\'on-Zygmund operator at a given smoothness level as a finite sum of cancellative, complexity zero operators, involving smooth wavelet forms, and continuous paraproduct forms. This representation results in a sparse $T(1)$-type bound, which in turn yields directly new sharp weighted bilinear estimates on Lebesgue and Sobolev spaces. Moreover, we apply the representation theorem to study fractional differentiation of bilinear operators, establishing Leibniz-type rules in weighted Sobolev spaces which are new even in the simplest case of the pointwise product.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.