Soft Truncation: A Universal Training Technique of Score-based Diffusion Model for High Precision Score Estimation (2106.05527v5)
Abstract: Recent advances in diffusion models bring state-of-the-art performance on image generation tasks. However, empirical results from previous research in diffusion models imply an inverse correlation between density estimation and sample generation performances. This paper investigates with sufficient empirical evidence that such inverse correlation happens because density estimation is significantly contributed by small diffusion time, whereas sample generation mainly depends on large diffusion time. However, training a score network well across the entire diffusion time is demanding because the loss scale is significantly imbalanced at each diffusion time. For successful training, therefore, we introduce Soft Truncation, a universally applicable training technique for diffusion models, that softens the fixed and static truncation hyperparameter into a random variable. In experiments, Soft Truncation achieves state-of-the-art performance on CIFAR-10, CelebA, CelebA-HQ 256x256, and STL-10 datasets.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.