Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Panel Data with Unknown Clusters (2106.05503v4)

Published 10 Jun 2021 in econ.EM

Abstract: Clustered standard errors and approximate randomization tests are popular inference methods that allow for dependence within observations. However, they require researchers to know the cluster structure ex ante. We propose a procedure to help researchers discover clusters in panel data. Our method is based on thresholding an estimated long-run variance-covariance matrix and requires the panel to be large in the time dimension, but imposes no lower bound on the number of units. We show that our procedure recovers the true clusters with high probability with no assumptions on the cluster structure. The estimated clusters are independently of interest, but they can also be used in the approximate randomization tests or with conventional cluster-robust covariance estimators. The resulting procedures control size and have good power.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.