Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the Linear Capacity of Conditional Disclosure of Secrets

Published 8 Jun 2021 in cs.IT and math.IT | (2106.04483v1)

Abstract: Conditional disclosure of secrets (CDS) is the problem of disclosing as efficiently as possible, one secret from Alice and Bob to Carol if and only if the inputs at Alice and Bob satisfy some function $f$. The information theoretic capacity of CDS is the maximum number of bits of the secret that can be securely disclosed per bit of total communication. All CDS instances, where the capacity is the highest and is equal to $1/2$, are recently characterized through a noise and signal alignment approach and are described using a graph representation of the function $f$. In this work, we go beyond the best case scenarios and further develop the alignment approach to characterize the linear capacity of a class of CDS instances to be $(\rho-1)/(2\rho)$, where $\rho$ is a covering parameter of the graph representation of $f$.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.