Papers
Topics
Authors
Recent
Search
2000 character limit reached

A multi-centre polyp detection and segmentation dataset for generalisability assessment

Published 8 Jun 2021 in eess.IV, cs.CV, and cs.LG | (2106.04463v3)

Abstract: Polyps in the colon are widely known cancer precursors identified by colonoscopy. Whilst most polyps are benign, the polyp's number, size and surface structure are linked to the risk of colon cancer. Several methods have been developed to automate polyp detection and segmentation. However, the main issue is that they are not tested rigorously on a large multicentre purpose-built dataset, one reason being the lack of a comprehensive public dataset. As a result, the developed methods may not generalise to different population datasets. To this extent, we have curated a dataset from six unique centres incorporating more than 300 patients. The dataset includes both single frame and sequence data with 3762 annotated polyp labels with precise delineation of polyp boundaries verified by six senior gastroenterologists. To our knowledge, this is the most comprehensive detection and pixel-level segmentation dataset (referred to as \textit{PolypGen}) curated by a team of computational scientists and expert gastroenterologists. The paper provides insight into data construction and annotation strategies, quality assurance, and technical validation. Our dataset can be downloaded from \url{ https://doi.org/10.7303/syn26376615}.

Citations (62)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.