Papers
Topics
Authors
Recent
Search
2000 character limit reached

Minimum Norm Method for Linear and Planar Sparse Arrays

Published 7 Jun 2021 in eess.SP | (2106.03666v1)

Abstract: Coprime and nested arrays are sparse arrays with enhanced degrees of freedom, which can be exploited in direction of arrival estimation using algorithms such as product processing, min processing, and MUSIC. This paper applies the minimum norm method for direction of arrival estimation. Comparison of the root mean squared errors and probabilities of resolution of the minimum norm method with MUSIC for a given linear coprime or nested array demonstrates the superiority of the minimum norm method. Specifically, minimum norm method exhibits lower mean squared error, narrower peaks at the locations of the true sources, and a lower noise floor in the spatial spectral estimate. This work also formulates two different minimum norm methods for planar sparse arrays: direct and linear. Comparison of the linear minimum norm method with the linear MUSIC for planar arrays also demonstrates higher accuracy of the minimum norm method.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.