Papers
Topics
Authors
Recent
2000 character limit reached

Regularization in ResNet with Stochastic Depth (2106.03091v1)

Published 6 Jun 2021 in stat.ML and cs.LG

Abstract: Regularization plays a major role in modern deep learning. From classic techniques such as L1,L2 penalties to other noise-based methods such as Dropout, regularization often yields better generalization properties by avoiding overfitting. Recently, Stochastic Depth (SD) has emerged as an alternative regularization technique for residual neural networks (ResNets) and has proven to boost the performance of ResNet on many tasks [Huang et al., 2016]. Despite the recent success of SD, little is known about this technique from a theoretical perspective. This paper provides a hybrid analysis combining perturbation analysis and signal propagation to shed light on different regularization effects of SD. Our analysis allows us to derive principled guidelines for choosing the survival rates used for training with SD.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.