Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 62 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Large mass rigidity for a liquid drop model in 2D with kernels of finite moments (2106.02442v2)

Published 4 Jun 2021 in math.AP, math-ph, math.MP, and math.OC

Abstract: Motivated by Gamow's liquid drop model in the large mass regime, we consider an isoperimetric problem in which the standard perimeter $P(E)$ is replaced by $P(E)-\gamma P_\varepsilon(E)$, with $0<\gamma<1$ and $P_\varepsilon$ a nonlocal energy such that $P_\varepsilon(E)\to P(E)$ as $\varepsilon$ vanishes. We prove that unit area minimizers are disks for $\varepsilon>0$ small enough. More precisely, we first show that in dimension $2$, minimizers are necessarily convex, provided that $\varepsilon$ is small enough. In turn, this implies that minimizers have nearly circular boundaries, that is, their boundary is a small Lipschitz perturbation of the circle. Then, using a Fuglede-type argument, we prove that (in arbitrary dimension $n\geq 2$) the unit ball in $\mathbb{R}n$ is the unique unit-volume minimizer of the problem among centered nearly spherical sets. As a consequence, up to translations, the unit disk is the unique minimizer. This isoperimetric problem is equivalent to a generalization of the liquid drop model for the atomic nucleus introduced by Gamow, where the nonlocal repulsive potential is given by a radial, sufficiently integrable kernel. In that formulation, our main result states that if the first moment of the kernel is smaller than an explicit threshold, there exists a critical mass $m_0$ such that for any $m>m_0$, the disk is the unique minimizer of area $m$ up to translations. This is in sharp contrast with the usual case of Riesz kernels, where the problem does not admit minimizers above a critical mass.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.