Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Distortion measure of spectrograms for classification of respiratory diseases (2106.02429v1)

Published 4 Jun 2021 in eess.SP

Abstract: A new method for the classification of respiratory diseases is presented. The method is based on a novel class of features, extracted from pulmonary sounds, by parameterizing their spectrograms that are represented as surfaces, and by utilizing geometrical distortions defined with reference to these surfaces. This method yields a set of highly descriptive features for the analysis of pulmonary sound recordings. Furthermore, by combining these features with Mel-frequency cepstral coefficients, we introduce a powerful model for the automatic diagnosis of common respiratory pathologies. Compared with baseline methods, our model achieves superior results for binary and multi-class classifications of common respiratory diseases. Our new approach to the classification of one-dimensional signals is applicable to other signals in the context of their representations in combined spaces or manifolds.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.