Papers
Topics
Authors
Recent
Search
2000 character limit reached

Classification of Audio Segments in Call Center Recordings using Convolutional Recurrent Neural Networks

Published 4 Jun 2021 in eess.AS and cs.SD | (2106.02422v1)

Abstract: Detailed statistical analysis of call center recordings is critical in the customer relationship management point of view. With the recent advances in artificial intelligence, many tasks regarding the calculation of call statistics are now performed automatically. This work proposes a neural network framework where the aim is to correctly identify audio segments and classify them as either customer or agent sections. Accurately identifying these sections gives a fair metric for evaluating agents' performances. We inherited the convolutional recurrent neural network (CRNN) architecture commonly used for such problems as music genre classification. We also tested the same architecture's performance, where the previous class information and the gender information of speakers are also added to the training data labels. We saw that CRNN could generalize the training data and perform well on validation data for this problem with and without the gender information. Moreover, even the training was performed using Turkish speech samples; the trained network was proven to achieve high accuracy for call center recordings in other languages like German and English.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.