Papers
Topics
Authors
Recent
2000 character limit reached

Resource Allocation in Disaggregated Data Centre Systems with Reinforcement Learning (2106.02412v2)

Published 4 Jun 2021 in cs.LG

Abstract: Resource-disaggregated data centres (RDDC) propose a resource-centric, and high-utilisation architecture for data centres (DC), avoiding resource fragmentation and enabling arbitrarily sized resource pools to be allocated to tasks, rather than server-sized ones. RDDCs typically impose greater demand on the network, requiring more infrastructure and increasing cost and power, so new resource allocation algorithms that co-manage both server and networks resources are essential to ensure that allocation is not bottlenecked by the network, and that requests can be served successfully with minimal networking resources. We apply reinforcement learning (RL) to this problem for the first time and show that an RL policy based on graph neural networks can learn resource allocation policies end-to-end that outperform previous hand-engineered heuristics by up to 22.0\%, 42.6\% and 22.6\% for acceptance ratio, CPU and memory utilisation respectively, maintain performance when scaled up to RDDC topologies with $102\times$ more nodes than those seen during training and can achieve comparable performance to the best baselines while using $5.3\times$ less network resources.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.