Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Global stable splittings of Stiefel manifolds (2106.02379v2)

Published 4 Jun 2021 in math.AT

Abstract: We prove global equivariant refinements of Miller's stable splittings of the infinite orthogonal, unitary and symplectic groups, and more generally of the spaces $O/O(m)$, $U/U(m)$ and $Sp/Sp(m)$. As such, our results encode compatible equivariant stable splittings, for all compact Lie groups, of specific equivariant refinements of these spaces. In the unitary and symplectic case, we also take the actions of the Galois groups into account. To properly formulate these Galois-global statements, we introduce a generalization of global stable homotopy theory in the presence of an extrinsic action of an additional topological group.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.