Relaxed Lagrangian duality in convex infinite optimization: reducibility and strong duality (2106.01662v1)
Abstract: We associate with each convex optimization problem, posed on some locally convex space, with infinitely many constraints indexed by the set T, and a given non-empty family H of finite subsets of T, a suitable Lagrangian-Haar dual problem. We obtain necessary and sufficient conditions for H-reducibility, that is, equivalence to some subproblem obtained by replacing the whole index set T by some element of H. Special attention is addressed to linear optimization, infinite and semi-infinite, and to convex problems with a countable family of constraints. Results on zero H-duality gap and on H-(stable) strong duality are provided. Examples are given along the paper to illustrate the meaning of the results.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.