Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Subspace-based Approach for Dimensionality Reduction and Important Variable Selection (2106.01584v2)

Published 3 Jun 2021 in stat.ME and stat.ML

Abstract: An analysis of high-dimensional data can offer a detailed description of a system but is often challenged by the curse of dimensionality. General dimensionality reduction techniques can alleviate such difficulty by extracting a few important features, but they are limited due to the lack of interpretability and connectivity to actual decision making associated with each physical variable. Variable selection techniques, as an alternative, can maintain the interpretability, but they often involve a greedy search that is susceptible to failure in capturing important interactions or a metaheuristic search that requires extensive computations. This research proposes a new method that produces subspaces, reduced-dimensional physical spaces, based on a randomized search and leverages an ensemble of critical subspace-based models, achieving dimensionality reduction and variable selection. When applied to high-dimensional data collected from the failure prediction of a composite/metal hybrid structure exhibiting complex progressive damage failure under loading, the proposed method outperforms the existing and potential alternatives in prediction and important variable selection.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.