Papers
Topics
Authors
Recent
2000 character limit reached

DeepWalk: Omnidirectional Bipedal Gait by Deep Reinforcement Learning

Published 1 Jun 2021 in cs.RO | (2106.00534v1)

Abstract: Bipedal walking is one of the most difficult but exciting challenges in robotics. The difficulties arise from the complexity of high-dimensional dynamics, sensing and actuation limitations combined with real-time and computational constraints. Deep Reinforcement Learning (DRL) holds the promise to address these issues by fully exploiting the robot dynamics with minimal craftsmanship. In this paper, we propose a novel DRL approach that enables an agent to learn omnidirectional locomotion for humanoid (bipedal) robots. Notably, the locomotion behaviors are accomplished by a single control policy (a single neural network). We achieve this by introducing a new curriculum learning method that gradually increases the task difficulty by scheduling target velocities. In addition, our method does not require reference motions which facilities its application to robots with different kinematics, and reduces the overall complexity. Finally, different strategies for sim-to-real transfer are presented which allow us to transfer the learned policy to a real humanoid robot.

Citations (44)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.