Papers
Topics
Authors
Recent
2000 character limit reached

Assessing the Impacts of Nonideal Communications on Distributed Optimal Power Flow Algorithms (2106.00135v3)

Published 31 May 2021 in eess.SY and cs.SY

Abstract: Power system operators are increasingly looking toward distributed optimization to address various challenges facing electric power systems. To assess their capabilities in environments with nonideal communications, this paper investigates the impacts of data quality on the performance of distributed optimization algorithms. Specifically, this paper compares the performance of the Alternating Direction Method of Multipliers (ADMM), Analytical Target Cascading (ATC), and Auxiliary Problem Principle (APP) algorithms in the context of DC Optimal Power Flow (DC OPF) problems. Using several test systems, this paper characterizes the performance of these algorithms in terms of their convergence rates and solution quality under three data quality nonidealities: (1) additive Gaussian noise, (2) bad data (large error), and (3) intermittent communication failure.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.