Papers
Topics
Authors
Recent
2000 character limit reached

Empowering Differential Networks Using Bayesian Analysis (2105.13584v1)

Published 28 May 2021 in stat.ME

Abstract: Differential networks (DN) are important tools for modeling the changes in conditional dependencies between multiple samples. A Bayesian approach for estimating DNs, from the classical viewpoint, is introduced with a computationally efficient threshold selection for graphical model determination. The algorithm separately estimates the precision matrices of the DN using the Bayesian adaptive graphical lasso procedure. Synthetic experiments illustrate that the Bayesian DN performs exceptionally well in numerical accuracy and graphical structure determination in comparison to state-of-the-art methods. The proposed method is applied to South African COVID-$19$ data to investigate the change in DN structure between various phases of the pandemic.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.