Papers
Topics
Authors
Recent
2000 character limit reached

Asymptotic simplification of Aggregation-Diffusion equations towards the heat kernel (2105.13323v1)

Published 27 May 2021 in math.AP

Abstract: We give sharp conditions for the large time asymptotic simplification of aggregation-diffusion equations with linear diffusion. As soon as the interaction potential is bounded and its first and second derivatives decay fast enough at infinity, then the linear diffusion overcomes its effect, either attractive or repulsive, for large times independently of the initial data, and solutions behave like the fundamental solution of the heat equation with some rate. The potential $W(x) \sim \log |x|$ for $|x| \gg 1$ appears as the natural limiting case when the intermediate asymptotics change. In order to obtain such a result, we produce uniform-in-time estimates in a suitable rescaled change of variables for the entropy, the second moment, Sobolev norms and the $C\alpha$ regularity with a novel approach for this family of equations using modulus of continuity techniques.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.