Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Out-of-Vocabulary Entities in Link Prediction (2105.12524v1)

Published 26 May 2021 in cs.LG and cs.SI

Abstract: Knowledge graph embedding techniques are key to making knowledge graphs amenable to the plethora of machine learning approaches based on vector representations. Link prediction is often used as a proxy to evaluate the quality of these embeddings. Given that the creation of benchmarks for link prediction is a time-consuming endeavor, most work on the subject matter uses only a few benchmarks. As benchmarks are crucial for the fair comparison of algorithms, ensuring their quality is tantamount to providing a solid ground for developing better solutions to link prediction and ipso facto embedding knowledge graphs. First studies of benchmarks pointed to limitations pertaining to information leaking from the development to the test fragments of some benchmark datasets. We spotted a further common limitation of three of the benchmarks commonly used for evaluating link prediction approaches: out-of-vocabulary entities in the test and validation sets. We provide an implementation of an approach for spotting and removing such entities and provide corrected versions of the datasets WN18RR, FB15K-237, and YAGO3-10. Our experiments on the corrected versions of WN18RR, FB15K-237, and YAGO3-10 suggest that the measured performance of state-of-the-art approaches is altered significantly with p-values <1%, <1.4%, and <1%, respectively. Overall, state-of-the-art approaches gain on average absolute $3.29 \pm 0.24\%$ in all metrics on WN18RR. This means that some of the conclusions achieved in previous works might need to be revisited. We provide an open-source implementation of our experiments and corrected datasets at at https://github.com/dice-group/OOV-In-Link-Prediction.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.