Papers
Topics
Authors
Recent
Search
2000 character limit reached

Single boson exchange representation of the functional renormalization group for strongly interacting many-electron systems

Published 25 May 2021 in cond-mat.str-el | (2105.11749v4)

Abstract: We present a reformulation of the functional renormalization group (fRG) for many-electron systems, which relies on the recently introduced single boson exchange (SBE) representation of the parquet equations [Phys. Rev. B 100, 155149 (2019)]. The latter exploits a diagrammatic decomposition, which classifies the contributions to the full scattering amplitude in terms of their reducibility with respect to cutting one interaction line, naturally distinguishing the processes mediated by the exchange of a single boson in the different channels. We apply this idea to the fRG by splitting the one-loop fRG flow equations for the vertex function into SBE contributions and a residual four-point fermionic vertex. Similarly as in the case of parquet solvers, recasting the fRG algorithm in the SBE representation offers both computational and interpretative advantages: the SBE decomposition not only significantly reduces the numerical effort of treating the high-frequency asymptotics of the flowing vertices, but it also allows for a clear physical identification of the collective degrees of freedom at play. We illustrate the advantages of an SBE formulation of fRG-based schemes, by computing through the merger of dynamical mean-field theory and fRG the susceptibilities and the Yukawa couplings of the two-dimensional Hubbard model from weak to strong coupling, for which we also present an intuitive physical explanation of the results. The SBE formulation of the one-loop flow equations paves a promising route for future multiboson and multiloop extensions of fRG-based algorithms.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.