Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Improving Few-shot Learning with Weakly-supervised Object Localization (2105.11715v1)

Published 25 May 2021 in cs.CV

Abstract: Few-shot learning often involves metric learning-based classifiers, which predict the image label by comparing the distance between the extracted feature vector and class representations. However, applying global pooling in the backend of the feature extractor may not produce an embedding that correctly focuses on the class object. In this work, we propose a novel framework that generates class representations by extracting features from class-relevant regions of the images. Given only a few exemplary images with image-level labels, our framework first localizes the class objects by spatially decomposing the similarity between the images and their class prototypes. Then, enhanced class representations are achieved from the localization results. We also propose a loss function to enhance distinctions of the refined features. Our method outperforms the baseline few-shot model in miniImageNet and tieredImageNet benchmarks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.