Papers
Topics
Authors
Recent
2000 character limit reached

SleepTransformer: Automatic Sleep Staging with Interpretability and Uncertainty Quantification (2105.11043v3)

Published 23 May 2021 in cs.LG and eess.SP

Abstract: Background: Black-box skepticism is one of the main hindrances impeding deep-learning-based automatic sleep scoring from being used in clinical environments. Methods: Towards interpretability, this work proposes a sequence-to-sequence sleep-staging model, namely SleepTransformer. It is based on the transformer backbone and offers interpretability of the model's decisions at both the epoch and sequence level. We further propose a simple yet efficient method to quantify uncertainty in the model's decisions. The method, which is based on entropy, can serve as a metric for deferring low-confidence epochs to a human expert for further inspection. Results: Making sense of the transformer's self-attention scores for interpretability, at the epoch level, the attention scores are encoded as a heat map to highlight sleep-relevant features captured from the input EEG signal. At the sequence level, the attention scores are visualized as the influence of different neighboring epochs in an input sequence (i.e. the context) to recognition of a target epoch, mimicking the way manual scoring is done by human experts. Conclusion: Additionally, we demonstrate that SleepTransformer performs on par with existing methods on two databases of different sizes. Significance: Equipped with interpretability and the ability of uncertainty quantification, SleepTransformer holds promise for being integrated into clinical settings.

Citations (150)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.