Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Compositional Fine-Grained Low-Shot Learning (2105.10438v1)

Published 21 May 2021 in cs.CV

Abstract: We develop a novel compositional generative model for zero- and few-shot learning to recognize fine-grained classes with a few or no training samples. Our key observation is that generating holistic features for fine-grained classes fails to capture small attribute differences between classes. Therefore, we propose a feature composition framework that learns to extract attribute features from training samples and combines them to construct fine-grained features for rare and unseen classes. Feature composition allows us to not only selectively compose features of every class from only relevant training samples, but also obtain diversity among composed features via changing samples used for the composition. In addition, instead of building holistic features for classes, we use our attribute features to form dense representations capable of capturing fine-grained attribute details of classes. We propose a training scheme that uses a discriminative model to construct features that are subsequently used to train the model itself. Therefore, we directly train the discriminative model on the composed features without learning a separate generative model. We conduct experiments on four popular datasets of DeepFashion, AWA2, CUB, and SUN, showing the effectiveness of our method.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.