Papers
Topics
Authors
Recent
2000 character limit reached

Designing truncated priors for direct and inverse Bayesian problems

Published 21 May 2021 in math.ST and stat.TH | (2105.10254v2)

Abstract: The Bayesian approach to inverse problems with functional unknowns, has received significant attention in recent years. An important component of the developing theory is the study of the asymptotic performance of the posterior distribution in the frequentist setting. The present paper contributes to the area of Bayesian inverse problems by formulating a posterior contraction theory for linear inverse problems, with truncated Gaussian series priors, and under general smoothness assumptions. Emphasis is on the intrinsic role of the truncation point both for the direct as well as for the inverse problem, which are related through the modulus of continuity as this was recently highlighted by Knapik and Salomond (2018).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.