Multi-Agent Deep Reinforcement Learning using Attentive Graph Neural Architectures for Real-Time Strategy Games (2105.10211v1)
Abstract: In real-time strategy (RTS) game artificial intelligence research, various multi-agent deep reinforcement learning (MADRL) algorithms are widely and actively used nowadays. Most of the research is based on StarCraft II environment because it is the most well-known RTS games in world-wide. In our proposed MADRL-based algorithm, distributed MADRL is fundamentally used that is called QMIX. In addition to QMIX-based distributed computation, we consider state categorization which can reduce computational complexity significantly. Furthermore, self-attention mechanisms are used for identifying the relationship among agents in the form of graphs. Based on these approaches, we propose a categorized state graph attention policy (CSGA-policy). As observed in the performance evaluation of our proposed CSGA-policy with the most well-known StarCraft II simulation environment, our proposed algorithm works well in various settings, as expected.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.