A rotated characteristic decomposition technique for high-order reconstructions in multi-dimensions (2105.10106v2)
Abstract: When constructing high-order schemes for solving hyperbolic conservation laws, the corresponding high-order reconstructions are commonly performed in characteristic spaces to eliminate spurious oscillations as much as possible. For multi-dimensional finite volume (FV) schemes, we need to perform the characteristic decomposition several times in different normal directions of the target cell, which is very time-consuming. In this paper, we propose a rotated characteristic decomposition technique which requires only one-time decomposition for multi-dimensional reconstructions. The rotated direction depends only on the gradient of a specific physical quantity which is cheap to calculate. This technique not only reduces the computational cost remarkably, but also controls spurious oscillations effectively. We take a third-order weighted essentially non-oscillatory finite volume (WENO-FV) scheme for solving the Euler equations as an example to demonstrate the efficiency of the proposed technique.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.