Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-splitting Eulerian-Lagrangian WENO schemes for two-dimensional nonlinear convection-diffusion equations (2406.01479v1)

Published 3 Jun 2024 in math.NA and cs.NA

Abstract: In this paper, we develop high-order, conservative, non-splitting Eulerian-Lagrangian (EL) Runge-Kutta (RK) finite volume (FV) weighted essentially non-oscillatory (WENO) schemes for convection-diffusion equations. The proposed EL-RK-FV-WENO scheme defines modified characteristic lines and evolves the solution along them, significantly relaxing the time-step constraint for the convection term. The main algorithm design challenge arises from the complexity of constructing accurate and robust reconstructions on dynamically varying Lagrangian meshes. This reconstruction process is needed for flux evaluations on time-dependent upstream quadrilaterals and time integrations along moving characteristics. To address this, we propose a strategy that utilizes a WENO reconstruction on a fixed Eulerian mesh for spatial reconstruction, and updates intermediate solutions on the Eulerian background mesh for implicit-explicit RK temporal integration. This strategy leverages efficient reconstruction and remapping algorithms to manage the complexities of polynomial reconstructions on time-dependent quadrilaterals, while ensuring local mass conservation. The proposed scheme ensures mass conservation due to the flux-form semi-discretization and the mass-conservative reconstruction on both background and upstream cells. Extensive numerical tests have been performed to verify the effectiveness of the proposed scheme.

Summary

We haven't generated a summary for this paper yet.